Low-Dimensional Semiconductors beyond Graphene: An Insight from Theory*
نویسنده
چکیده
FIG.1. Calculated electron density difference ∆ρ=ρtot(bulk)−Σρtot(monolayers) representing the charge redistribution caused by assembling the bulk structure from isolated monolayers. (a) Diffusion Monte Carlo (DMC) isosurfaces bounding regions of excess electron density (dark brown) and electron deficiency (light brown), with respective values ±6.5×10 e/Å. (b) <∆ρ(z)> for DMC and selected DFT functionals averaged across the x−y plane of the layers, with z/c indicating the relative position of the plane in the unit cell. (From Ref. [2]). If graphene had a band gap, it would probably be the optimum 2D system for electronics applications. Layered transition metal dichalcogenides (TMDs) with a robust intrinsic band gap appear as the next-best alternative. Only after a long search, however, optimum strategies have been devised to make low-resistance, ohmic contacts to TMDs [1]. In the meantime, a new class of 2D semiconductors has been rapidly gaining attention, namely layered black phosphorus and related phosphorene monolayers [2]. These 2D systems display a tunable, direct fundamental band gap and thus are ideal candidates for optoelectronics applications. Recent Quantum Monte Carlo (QMC) calculations show that the inter-layer bonding, while weak, is not well described by dispersive van der Waals (vdW) interactions [3]. As seen in Fig. 1, QMC results differ qualitatively from vdW-enhanced DFT functionals and the common designation of similar systems as “van der Waals solids” is strictly incorrect. Also other group V systems including monolayers of AsxP1-x [4], IV-VI compounds such as SiS [5] with the same average valence, and related 2D phosphorus carbide [6] share the same nonplanarity of their structure with phosphorene. Same as in phosphorene, the fundamental band gap in these systems depends sensitively on the number of layers and in-layer strain. Predictive ab initio calculations provide here a useful guidance to experimental studies. * Partly supported by the NSF/AFOSR EFRI 2-DARE grant number #EFMA-1433459. References: [1] Jie Guan, Hsun-Jen Chuang, Zhixian Zhou, and David Tománek, ACS Nano 11, 3904 (2017). [2] H. Liu et al. ACS Nano 8, 4033 (2014). [3] L. Shulenburger, A.D. Baczewski, Z. Zhu, J. Guan, and D. Tománek, Nano Lett. 15, 8170 (2015). [4] Zhen Zhu, Jie Guan, and David Tománek, Nano Lett. 15, 6042 (2015). [5] Zhen Zhu, Jie Guan, Dan Liu, and David Tománek, ACS Nano 9, 8284 (2015). [6] Jie Guan, Dan Liu, Zhen Zhu, and David Tománek, Nano Lett. 16, 3247 (2016).
منابع مشابه
Hydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect
To explore the possibility of using graphene based biosensor, adsorption of hydrogen peroxide on graphene has been investigated using density functional theory. The electronic properties of defect free and defective graphene in the presence of different number of hydrogen peroxide have been studied. The graphene with the most stable configuration defect named as SW defect is considered. The hig...
متن کاملElectronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study
The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...
متن کاملTemperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati
In this study, the vibration behavior of circular and annular graphene sheet embedded in a Visco-Pasternak foundation and coupled with temperature change and under in-plane pre-load is studied. The single-layered annular graphene sheet is coupled by an enclosing viscoelastic medium which is simulated as a Visco- Pasternak foundation. By using the nonlocal elasticity theory and classical plate t...
متن کاملApproaching ballistic transport in suspended graphene.
The discovery of graphene raises the prospect of a new class of nanoelectronic devices based on the extraordinary physical properties of this one-atom-thick layer of carbon. Unlike two-dimensional electron layers in semiconductors, where the charge carriers become immobile at low densities, the carrier mobility in graphene can remain high, even when their density vanishes at the Dirac point. Ho...
متن کاملElectronic compressibility of a graphene bilayer.
We calculate the electronic compressibility arising from electron-electron interactions for a graphene bilayer within the Hartree-Fock approximation. We show that, due to the chiral nature of the particles in this system, the compressibility is rather different from those of either the two-dimensional electron gas or ordinary semiconductors. We find that an inherent competition between the cont...
متن کاملKeynote Speaker Two-Dimensional Materials: An Industry Perspective
The isolation of graphene, now over a decade ago, has given rise to the revitalization of many two-dimensional materials (2DM). The 2DM materials under investigation, in addition to graphene, include hexagonal boron nitride (h-BN), semiconducting, metallic, and superconducting transition metal dichalcogenides (TMD). Graphene has received a lot of attention because of its superior physical and c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017